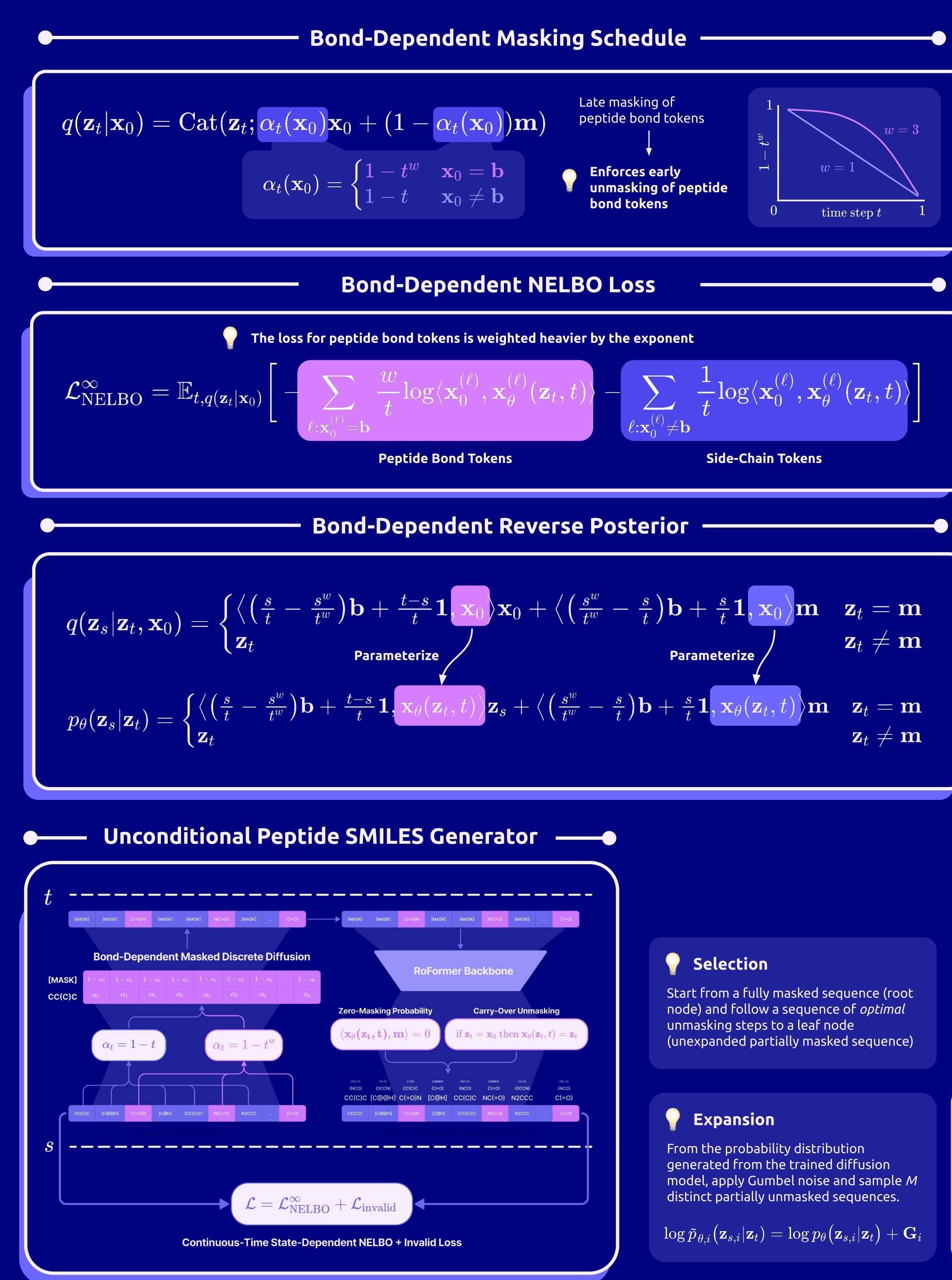
BOND-DEPENDENT MASKED DISCRETE DIFFUSION

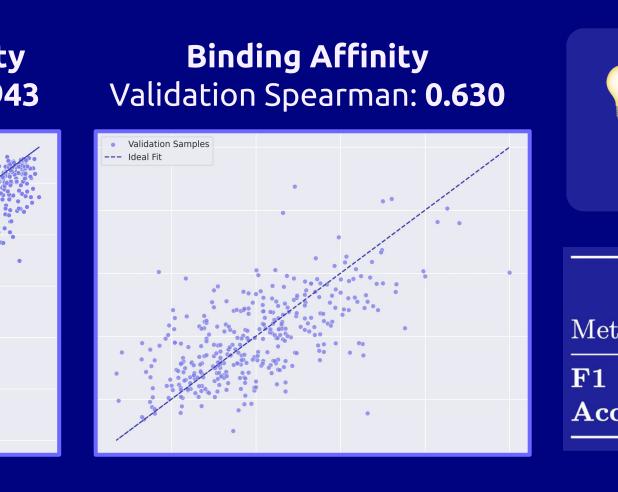


De Novo Design of Therapeutic Peptides **MULTI- OBJECTIVE DISCRETE DIFFUSION**

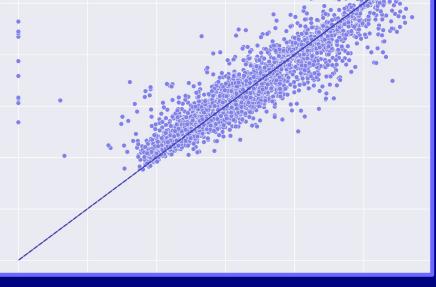
Lack of multi-objective guidance strategies in discrete state spaces

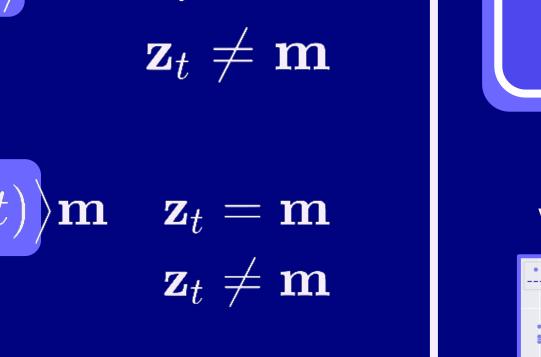
Lack of generative models non-natural and cyclic peptides

MONTE-CARLO TREE GUIDANCE (MCTG)



Membrane Permeability Validation Spearman: 0.943





time step t

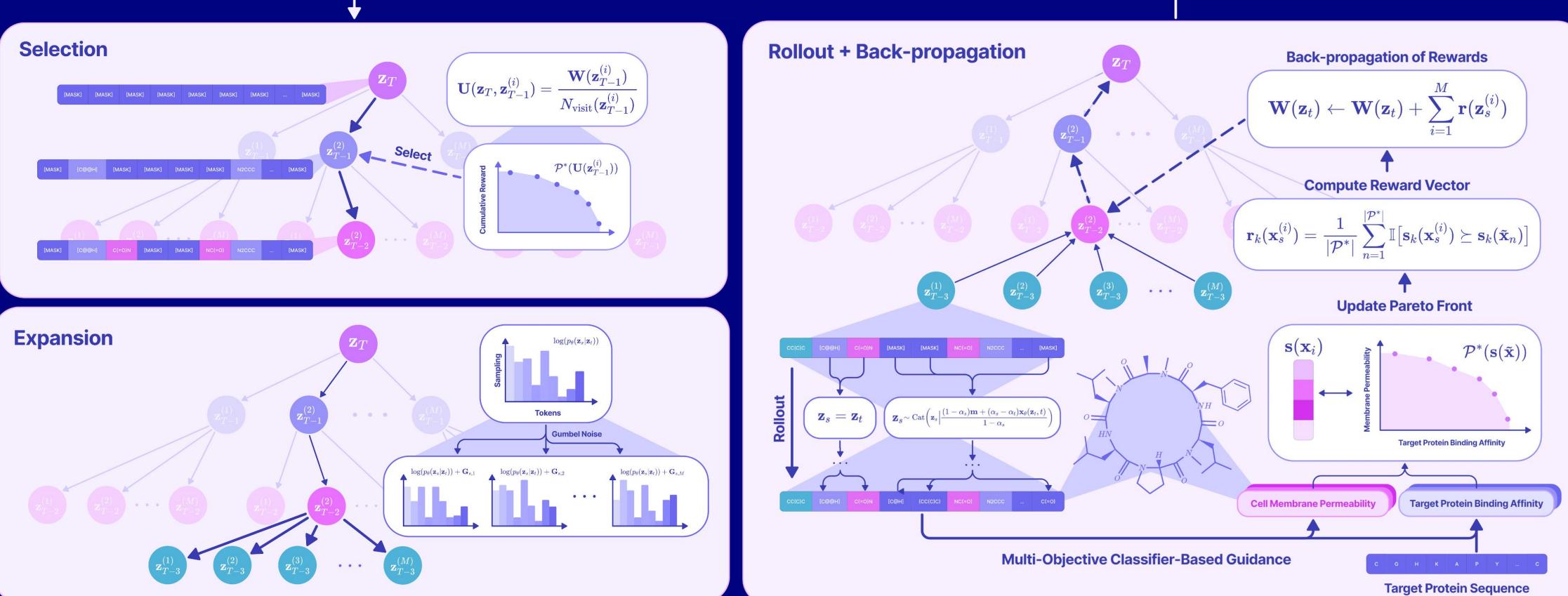
Selection

Start from a fully masked sequence (root node) and follow a sequence of *optimal* unmasking steps to a leaf node (unexpanded partially masked sequence)

Expansion

From the probability distribution generated from the trained diffusion model, apply Gumbel noise and sample M distinct partially unmasked sequences.

$$_{i}(\mathbf{z}_{s,i}|\mathbf{z}_{t}) = \log p_{ heta}(\mathbf{z}_{s,i}|\mathbf{z}_{t}) + \mathbf{G}_{i}$$



Iteration

Can we generate valid therapeutic peptides simultaneously optimized across *multiple* properties?

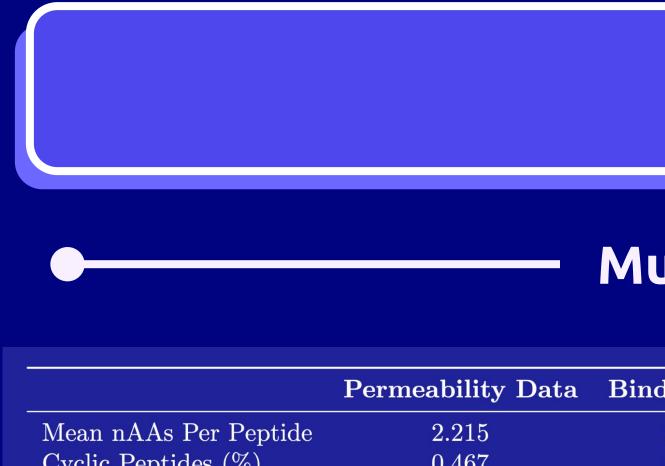
Previous discrete guidance methods rely on projecting to and from the continuous latent space or gradient estimation. Multi-objective guidance strictly in the discrete state space remains underexplored.

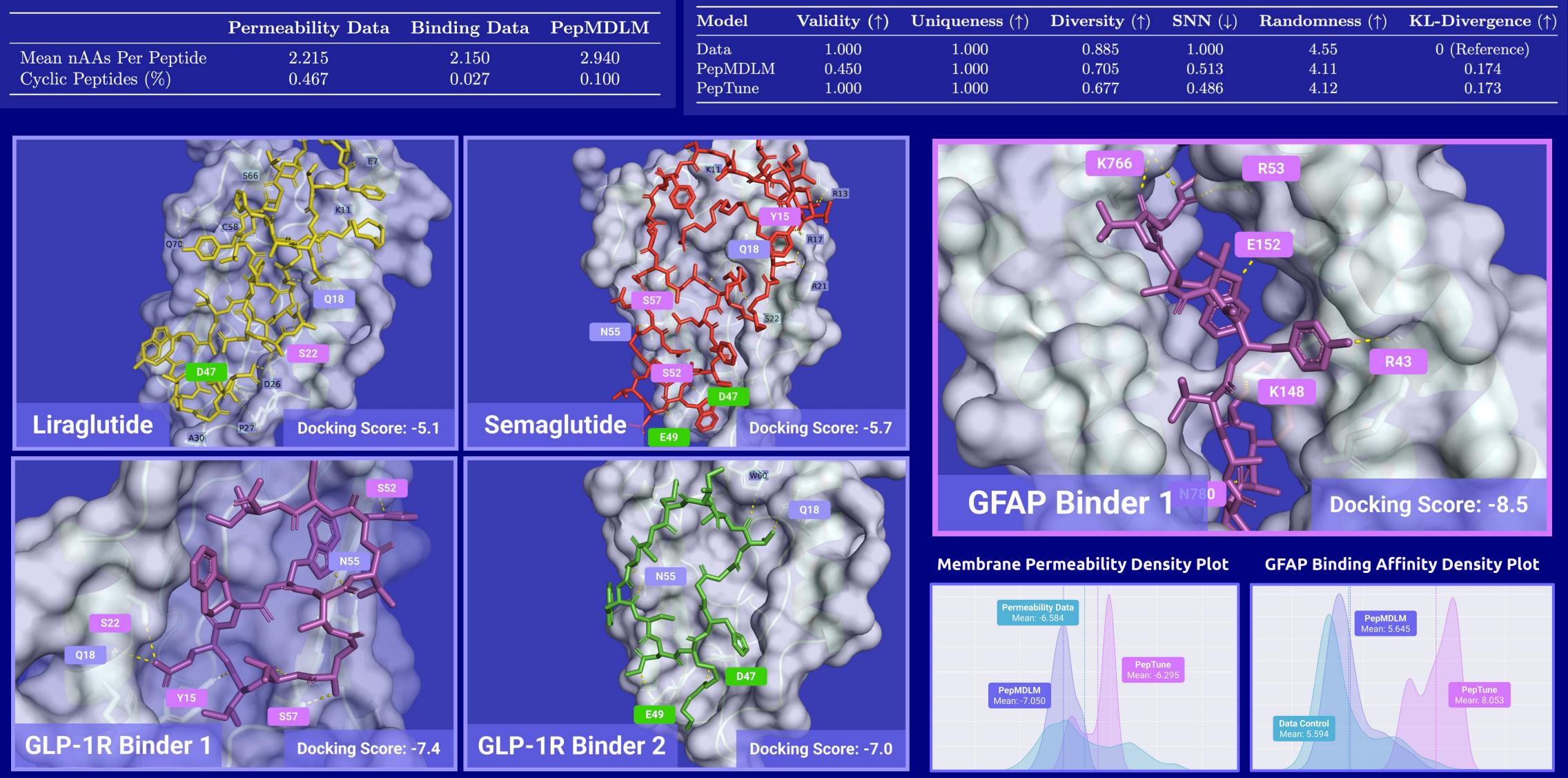
Existing sequence-based models represent peptides as sequences of the 20 natural amino acids, but fail to represent diverse space of non-natural amino acids and cyclic peptides with improved therapeutic properties.

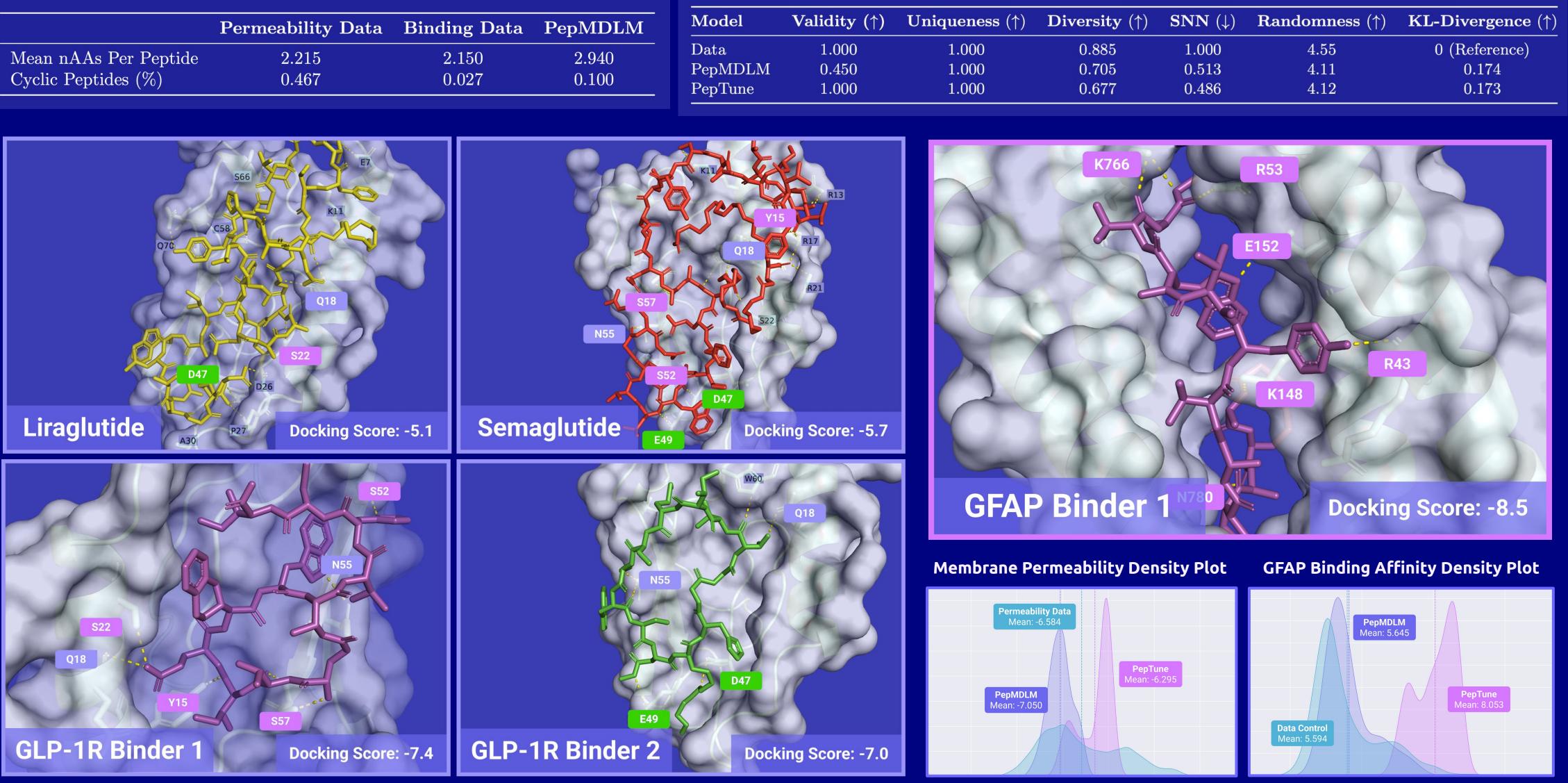
We trained XGBoost classifiers for key therapeutic properties, including binding affinity, membrane permeability, solubility, non-hemolysis, and non-fouling for multi-objective guidance

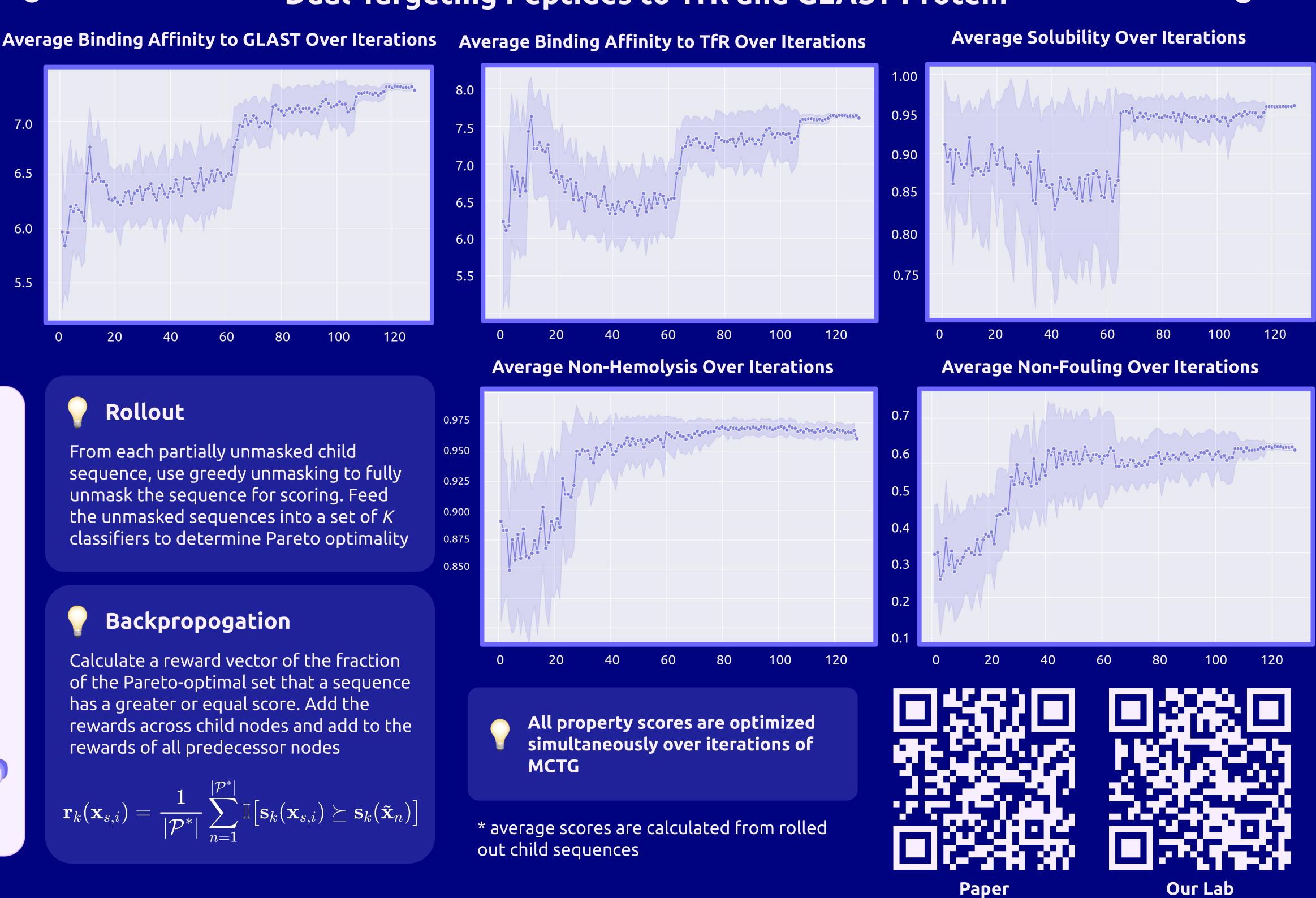
	Solubility		Hemolysis		Non-fouling	
ric	Ours	PeptideBERT	Ours	PeptideBERT	Ours	PeptideBERT
uracy	$\begin{array}{c} 0.660\\ 0.661 \end{array}$	$0.597 \\ 0.651$	$\begin{array}{c} 0.846\\ 0.846 \end{array}$	$\begin{array}{c} 0.483 \\ 0.823 \end{array}$	0.768 0.766	0.699 0.873

Sophia Tang* • Yinuo Zhang* • Pranam Chatterjee Penn DukeNUS Medical School









$$\mathbf{r}_k(\mathbf{x}_{s,i}) = rac{1}{|\mathcal{P}^*|} \sum_{n=1}^{|\mathcal{P}^*|} \mathbb{I}ig[\mathbf{s}_k(\mathbf{x}_{s,i}) \succeq \mathbf{s}ig]$$

EXPERIMENTS

Multi-Objective Peptide SMILES Generation

Dual-Targeting Peptides to TfR and GLAST Protein —