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Motivation

1. Therapeutic mRNAs require co-optimality across several properties of interest. Designing mRNAs for delivery, such as in mRNA-LNP delivery platforms, is dependent on 
the mRNA’s potential to translate into the antigen of interest and trigger an immune response. For this, properties such as half-life, polysome formation propensity, 
immunogenicity, translation rate, and more must be considered when evaluating the efficacy of an mRNA payload.

2. UTR design and codon optimization should be done simultaneously. Typically, an existing set of 5’/3’ untranslated regions (UTRs) is paired with an mRNA open reading 
frame (ORF) with assumed compatibility. However, interactions between the ORF and UTRs can limit mRNA efficacy. Novel UTRs should be designed in the context of an ORF.

3. Typical mRNA engineering does not consider the diversity of the mRNA sequence space. Canonical codon optimization consists of referencing species-specific codon 
usage tables for replacing rare codons. Though sensible, avoiding rare codons is not always beneficial. Moreover, stitching existing UTRs to novel open reading frames leaves 
the UTR design space unexplored. Further combinatorics, whether during codon optimization, UTR design, or both, ought to be explored in a responsible design to avoid bias.

Conclusions

1. We introduce mRNAutilus, a masked diffusion model for generation of diverse, naturalistic, thermodynamically stable mRNA sequences de novo.
2. We utilize the rich, learned latent space of mRNAutilus to predict various mRNA therapeutic properties of interest, such as half life, ribosomal load, and 

translation rate from sequence only.
3. We demonstrate the ability to conditionally guide mRNAutilus generation using property prediction regressors to simultaneously design UTRs for and 

perform codon optimization on existing open reading frame templates. Monte Carlo Tree Guidance shows consistent improvement of mRNA fitness 
over the generation time course, greatly outperforming existing wild-type mRNAs in in-silico evaluation.

Paper

Latent Representation Analysis

Fig 2. Property prediction 
regressors. Validation set 
performance for XGBoost 
property prediction 
regressors on existing, 
open-sourced datasets 
collected via 
massively-parallel assays in 
human cells/tissues.

Fig 5. Multi-property, 
conditional generation of  
(A) Human Mucin 1 and 
(B) SARS-CoV-2 S-Protein 
mRNAs.

Fig 3. Principal component 
analysis of mRNA and ncRNA 
embeddings using mRNAutilus. 
100 natural mRNAs and ncRNAs 
were embedded and projected onto 
the first 2 PCs of the concatenated 
embedding matrix. mRNAs (violet) 
and ncRNA (blue) clusters are 
separable in the latent space.

Fig 1. Unconditional, unguided generation of mRNA. Distributions for sequences of length 500 
are shown as violin plots, for both generated (violet) and to natural mRNAs (navy). Plots evaluate 
sequence (A) GC content distributions (%), (B) predicted minimum free energy (kcal/mol), (C) kozak 
consensus sequence frequency, (D) average pairwise sequence diversity, and (E) sequence entropy 
(bits). Line plots below each panel show averages across across sequence lengths.

Unconditional Generation Multi-Objective-Guided Generation

Fig 4. Multi-property, conditional generation of P. pyralis luciferase mRNA. A set of Fluc mRNAs is generated and optimized 
across properties of interest. Codon optimization and UTR design are done in parallel over Monte Carlo Tree Guidance time course. 
Codon optimization is done (A) up to the 50th codon and (B) for the entire CDS. Wild-type mRNA (navy) and classifier median 
scores (teal) are shown as horizontal lines.

A GC Content Distributions B Minimum Free Energy Distributions C Kozak Consensus Frequency Distributions

E Sequence Entropy DistributionsD Average Diversity Distributions

Table 1. Generated mRNA 
property scores in 
comparison to WT mRNAs 
for each gene. 

5ʼUTR
CDS
3ʼUTR

Predicted Half-life Predicted Ribosomal Load

Predicted Translation Rate Predicted Translation Rate

Predicted Ribosomal LoadPredicted Half-lifeA  B
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PCA Projected Embeddings of RNA 
Sequences
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Masked Diffusion Model

We model our sequence generation problem as a 
masked discrete diffusion process (1). We sample 
from the parameterized reverse posterior of the 
diffusion process (2), where a neural network is 
trained to reverse the noising process (3).

(1)

(2)

(3)

Monte-Carlo Tree Guidance

Selection: Start from a fully masked sequence (root 
node) and follow a sequence of optimal unmasking 
steps to a leaf node (unexpanded partially masked 
sequence)

Unconditionally-generated 
mRNAs

A Evolutionary Scale Pretraining of mRNA Masked Diffusion Model
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B Learned Representations for Function Prediction

mRNAutilus

Sequence Representation

Half-life 
prediction

Translation
Rate 
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Experimental 
Property Prediction
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C Multi-Property Guided mRNA Design

XXXXXXX…XXXGAA…XXXXXXX

ACUGCAUU..GCUGAA…CCUUGAAAA

mRNAutilus

CUAUGCA…GCCGAA…CGCCCAA

5ʼUTR
CDS

3ʼUTR
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mRNA Template

Half-Life
Ribosomal Load
Translation Rate

Optimized mRNA Transcript

Property Regressors

Expansion: From the probability distribution 
generated from the trained diffusion model, apply 
Gumbel noise and sample M distinct partially 
unmasked sequences.

Rollout: From each partially unmasked child 
sequence, use greedy unmasking to fully unmask 
the sequence for scoring. Feed the unmasked 
sequences into a set of K classifiers to determine 
Pareto optimality.

Backpropagation: Calculate a reward vector of the 
fraction of the Pareto-optimal set that a sequence 
has a greater or equal score. Add the rewards across 
child nodes and add to the rewards of all 
predecessor nodes

Predicted Half-life Predicted Ribosomal Load Predicted Translation Rate

SARS-CoV-2 
S-Protein

Iterations of MCTG

Human 
Mucin-1


