Gumbel-Softmax Flow Matching with Straight-Through
Guidance for Controllable Biological Sequence Generation
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Motivation
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1. Discretization Errors as a Result of Discrete Iterative Steps. Discrete diffusion and flow matching models operate in the fully discrete state space, which means that the
noisy sequence at each time step is a fFully discrete sequence of one-hot vectors sampled from continuous categorical distributions. This can result in discretization errors
during sampling when abruptly restricting continuous distributions to a single token.

2. Deterministic vs Stochastic Flows for De Novo Design Tasks. Many flow matching and optimal transport strategies learn strictly deterministic paths with minimal
stochasticity, which is optimal for tasks like matching trajectories, but lacks expressivity and diversity for de novo design tasks like protein or peptide-binder design.

3. Lack of Training-Free Guidance Methods for Discrete Flow Matching. Due to the non-differentiability of discrete sequences sampled from relaxed categorical distributions,
guidance strategies often involve training classifiers on noisy distributions (classifier-based) or training a separate guided flow model (classifier-free).

Gumbel-Softmax Flow and Score Matching for Discrete Generation on the Multi-Dimensional Simplex
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Compute Score During Inference
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Fig 1. Gumbel-Softmax Flow Matching (Left) and Score Matching (Right). We define a Gumbel-Softmax interpolant that transforms uniform categorical distributions (high
temperature) to distributions concentrated on the vertex of the simplex (low temperature) over time. Then, we train a denoising model to reconstruct the clean distribution from
various levels of noise. During inference, we compute the velocity field by taking a weighted sum of the conditional velocity fields scaled by the predicted probabilities.

Gumbel-Softmax FM and SM for De Novo Protein and DNA Promoter Design Tasks

Model

Bit Diffusion (Bit Encoding)*

Bit Diffusion (One-Hot Encoding)*
D3PM-Uniform*

DDSM*

Model Params (|) pLDDT (1) pTM (1) pAE () Entropy (1) Diversity (%) (1)
Test Dataset (random 1000) - 74.00 0.63 12.99 4.0 71.8
EvoDift 640M 31.84 0.21 24.76 4.05 93.2

ProtGPT?2 738M 54.92 0.41 19.39 3.8 70.9 Lo Masah

ProGen2-small 151M 49.38 0.28 23.38 2.55 89.3
Gumbel-Softmax Flow Matching (Ours) 198M 52.54 0.27 16.67 3.41 86.1
Gumbel-Softmax Score Matching (Ours) 198M 49.40 0.29 15.71 3.37 82.5

L:94
pLDDT: 60.1
PTM: 0.43
PAE: 12.67

L: 94
pLDDT: 65.1
PTM: 0.5
PAE: 8.3

Dirichlet Flow Matching
Fisher Flow Matching
Gumbel-Softmax Flow Matching (Ours)

Fig 2. Gumbel-Softmax FM and SM for protein and DNA promoter generation. Left: Evaluation metrics for the generative quality of protein sequences. Metrics were calculated
on 100 unconditionally generated sequences from each model. Right: Evaluation of promoter DNA generation conditioned on transcription profile. MSE was evaluated across all
validation batches between the predicted signal of a conditionally generated sequence and the true sequence. Regulatory signals were predicted with a pre-trained Sei model.

Straight-Through Guided Flow Matching (STGFlow) for Target-Binding Peptide Design

N\ J

D o

- { v
< ARAZ 2 n 2RIV VYTV M. .
AN J&‘-‘A\.‘éi o v AR - ™ s ¢
o - - - . L LN
e g BTV RARAAA P AANAARICB ST
1 - 3

\ Velocity Field

-
kvxqub(y\wt)

Guidance Term

A Guided Binding Affinity to 3EQS B Guided Binding Affinity to GFAP existing binder ipTM (1) pTM (1) VINA Docking Score (kcal/mol) (1)
existing  designed existing designed existing designed
GLP-1R (3C5T) HXEGTFTSDVSSYLEGQAAKEFIAWLVRGRG * 0.65 3 0.66 -5.7 -7.5
1AYC ARLIDDQLLKS 0.68 0.67 0.88 0.88 -5.3 -4.6
S % 2Q8Y ALRRELADW 0.44 0.70 0.83 0.84 -6.7 -6.8
& o I\ A 3EQS GDHARQGLLALG 0.80 0.71 0.88 0.86 4.4 4.7
2 2 1 Mhobe o o 3NIH RIAAA 0.85 0.86 0.91 0.90 6.2 5.7
2 £ ‘\ Voot s ) 4EZN VDKGSYLPRPTPPRPTYNRN 0.54 0.59 0.85 0.87 4.1 6.5
£ £ l W A 4GNE ARTKQTA 0.89 0.76 0.76 0.76 -5.0 -4.8
=2 =2 “ 1‘ 4107 HKILHRLLQD 0.93 0.79 0.91 0.94 -4.6 -5.9
5 5 ARV LN || 5E1C KHKILHRLLQDSSS 0.83 0.80 0.91 0.91 43 -5.1
£ s UL ATEL LR R et 5EYZ SWESHKSGRETEV 0.73 0.81 0.77 0.78 2.9 6.9
3 3 [ cel Y | 5KRI KHKILHRLLQDSSS 0.83 0.77 0.91 0.91 -35 -5.5
% g 7TLUL RWYERWV 0.94 0.91 0.93 0.92 -6.5 -7.6
g é_'_’ 8CN1 ETEV 0.90 0.86 0.72 0.82 -6.0 -6.9
Protein Name (PDB ID) Disease ipTM (1) pTM (1) VINA Docking Score (kcal/mol) ({)
scrambled designed scrambled designed scrambled designed
75 100 125 150 175 200 0 20 40 60 80 100
Integration Step Integration Step GFAP (6A9P) Alexander Disease 0.38 0.62 0.29 0.31 -3.7 -5.9
eIF2B (6CAJ) Vanishing White Matter Disease 0.39 0.61 0.76 0.77 -9.0 -9.1
Gigaxonin (3HVE) Giant Axonal Neuropathy 0.54 0.75 0.82 0.83 -6.2 -6.8
: : : : NPC2 (6W5V Niemann-Pick Disease Type C 0.34 0.80 0.77 0.79 -5.6 -6.5
Flg 3. Strai g ht-Throu g h Guided Flow Matchin g (STG F'.OW) .10 JPH3 ((**) ) Huntington’s Disease-Like 2 (HDL2) 0.60 0.72 0.49 0.49 7.8 79

BMI1 (2CKL) Medulloblastoma 0.43 0.71 0.73 0.81 -6.2 -6.8

fill the gap in inference-time guidance algorithms for discrete
flow matching, we introduce STGFlow, a classifier-based

guidance algorithm that leverages straight-through gradient Fig 4. Comparison of ipTM and VINA docking scores for peptide binders generated from Gumbel-Softmax
estimators to guide the flow trajectory towards high-scoring FM with STGFlow to experimentally-validated binders and scrambled controls (for targets without known
sequences sampled from the Gumbel-Softmax distribution. binders). Generated binders show consistently stronger binding affinity across both tasks.

Conclusions

1. We define a temperature-controlled Gumbel-Softmax interpolation and derive a velocity field that enables smooth transport from noisy to clean
distributions on the interior of the simplex.

2. By applying Gumbel noise during training, Gumbel-Softmax FM avoids overfitting the training data, increasing the exploration of diverse flow
trajectories.

3. To address the lack of training-free guidance methods for discrete flow matching, we propose STGFlow, a classifier-based guidance method that
leverages straight-through gradient estimators to steer the velocity field toward optimal sequences on the data manifold.




