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Motivation

1. Schrodinger Bridge Matching Frameworks are Limited to Single Continuous Trajectories. Predicting how a population evolves between an initial and final state is central to
many problems in generative modeling, from simulating perturbation responses to modeling cell fate decisions. Existing approaches, such as Flow Matching and Schrodinger
Bridge Matching, effectively learn mappings between two distributions by modeling a single stochastic path but are restricted to modeling evolution along a single path.

2. Branching Dynamics is Governed by Energy-Minimizing Trajectories. To define more complex systems where the optimal dynamics cannot be accurately captured by
minimizing the standard squared Euclidean cost in entropic OT, the Generalized Schrodinger Bridge (GSB) problem introduces an additional nonlinear state-cost.

3. Branching is Central to Modeling Cellular Perturbation Responses. When a homogeneous cell population undergoes a perturbation, such as gene knockouts or drug
treatments, it frequently induces fate bifurcation as the cell population splits into multiple phenotypically distinct outcomes or commits to divergent cell fates

Solving the Branched Generalized SB Problem with Conditional Stochastic Optimal Control (CondSOC)
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Multi-Stage Training of BranchSBM

Stage 1: Learn Energy-Minimizing Neural Interpolant Stage 3: Learn Optimal Growth Networks
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Multi-Path Navigation of 3D LiDAR Manifolds Modeling Cell Fate Differentiation

Mass Evolution Per Branch Energy Evolution Per Branch
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Conclusions Preprint

1. We define the Branched Generalized Schrodinger Bridge problem and introduce BranchSBM, a novel matching framework that learns optimal
branched trajectories from an initial distribution to multiple target distributions.

2. We derive the Branched Conditional Stochastic Optimal Control (CondSOC) problem as the sum of Unbalanced CondSOC objectives and
leverage a multi-stage training algorithm to learn the optimal branching drift and growth fields that transport mass along a branched trajectory

3. We demonstrate the unique capability of BranchSBM to model dynamic branching trajectories while matching multiple target distributions across
various problems, including 3D navigation over LiDAR manifolds, modeling differentiating single-cell population dynamics, and predicting
heterogeneous cell states after perturbation.




