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Motivation

1. Schrödinger Bridge Matching Frameworks are Limited to Single Continuous Trajectories. Predicting how a population evolves between an initial and final state is central to 
many problems in generative modeling, from simulating perturbation responses to modeling cell fate decisions. Existing approaches, such as Flow Matching and Schrödinger 
Bridge Matching, effectively learn mappings between two distributions by modeling a single stochastic path but are restricted to modeling evolution along a single path.

2. Branching Dynamics is Governed by Energy-Minimizing Trajectories. To define more complex systems where the optimal dynamics cannot be accurately captured by 
minimizing the standard squared Euclidean cost in entropic OT, the Generalized Schrödinger Bridge (GSB) problem introduces an additional nonlinear state-cost.

3. Branching is Central to Modeling Cellular Perturbation Responses. When a homogeneous cell population undergoes a perturbation, such as gene knockouts or drug 
treatments, it frequently induces fate bifurcation as the cell population splits into multiple phenotypically distinct outcomes or commits to divergent cell fates

Conclusions

1. We define the Branched Generalized Schrödinger Bridge problem and introduce BranchSBM, a novel matching framework that learns optimal 
branched trajectories from an initial distribution to multiple target distributions.

2. We derive the Branched Conditional Stochastic Optimal Control (CondSOC) problem as the sum of Unbalanced CondSOC objectives and 
leverage a multi-stage training algorithm to learn the optimal branching drift and growth fields that transport mass along a branched trajectory

3. We demonstrate the unique capability of BranchSBM to model dynamic branching trajectories while matching multiple target distributions across 
various problems, including 3D navigation over LiDAR manifolds, modeling differentiating single-cell population dynamics, and predicting 
heterogeneous cell states after perturbation.

Preprint

Modeling Drug-Induced Perturbation Responses

Fig 4. Comparison Between BranchSBM and Single-Branch SBM. Scaling BranchSBM across 50, 
100, and 150 principal components and three branches outperforms single-branch SBM.

Fig 5. Results for Trametinib Perturbation Modeling with BranchSBM. (A) Clustered Trametinib 
perturbation data. (B) Three branches learned by BranchSBM. (C) Evolution of energy and mass.

Table 2: Results for Clonidine Perturbation Modeling for Increasing Principal 
Component Dimensions. Maximum-mean discrepancy (MMD) across all PCs and 
Wasserstein distances (W1 and W2) of top 2 PCs between ground truth and 
reconstructed distributions at t = 1 simulated from the validation data at t = 0. 
Results for single-branch SBM (50 PCs) and BranchSBM (2 branches) were 
averaged over 5 independent runs.

Table 3: Results for Trametinib Perturbation Modeling

Branched CondSOC as the 
Sum of Unbalanced CondSOC 
Objectives

Branched Energy Loss Function 
to Optimize Branched Drift and 

Growth Networks

Solving the Branched Generalized SB Problem with Conditional Stochastic Optimal Control (CondSOC)

Multi-Stage Training of BranchSBM

Modeling Cell Fate Differentiation

Fig 3. Application of BranchSBM on Modeling Differentiating Single-Cell Population Dynamics. Mouse 
hematopoiesis scRNA-seq data is provided for three time points. Simulated states (top) and trajectories 
(bottom) at time using single-branch SBM. Simulated states with BranchSBM at (B) t1 and (C) t2. (D) Learned 
trajectories on validation samples

Fig 2. Application of BranchSBM on Learning Branched Paths on a LiDAR Manifold. 
(Top) Plot of weight (left) and energy (right) evolution of each branch over time. 
(Bottom) Plots of the initial and target distributions, learned interpolants, and learned 
branched trajectories on the LiDAR manifold.

Multi-Path Navigation of 3D LiDAR Manifolds 

Table 1: Benchmark of BranchSBM against 
single-branch SBM on multi-path surface 
navigation. Wasserstein distances (W1 and W2) 
between the reconstructed and ground-truth 
distributions with 100 Euler steps at time t = 1 
from validation samples in the initial distribution. 
Results are averaged over 5 independent runs.


